General Certificate of Education
June 2007
Advanced Level Examination

A A

MATHEMATICS
MPC4
Unit Pure Core 4

Monday 18 June 20079.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Find the remainder when $2 x^{2}+x-3$ is divided by $2 x+1$.
(b) Simplify the algebraic fraction $\frac{2 x^{2}+x-3}{x^{2}-1}$.

2 (a) (i) Find the binomial expansion of $(1+x)^{-1}$ up to the term in x^{3}.
(ii) Hence, or otherwise, obtain the binomial expansion of $\frac{1}{1+3 x}$ up to the term in x^{3}.
(b) Express $\frac{1+4 x}{(1+x)(1+3 x)}$ in partial fractions.
(c) (i) Find the binomial expansion of $\frac{1+4 x}{(1+x)(1+3 x)}$ up to the term in x^{3}. (3 marks)
(ii) Find the range of values of x for which the binomial expansion of $\frac{1+4 x}{(1+x)(1+3 x)}$ is valid.
(2 marks)

3 (a) Express $4 \cos x+3 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<360^{\circ}$, giving your value for α to the nearest 0.1°.
(b) Hence solve the equation $4 \cos x+3 \sin x=2$ in the interval $0^{\circ}<x<360^{\circ}$, giving all solutions to the nearest 0.1°.
(c) Write down the minimum value of $4 \cos x+3 \sin x$ and find the value of x in the interval $0^{\circ}<x<360^{\circ}$ at which this minimum value occurs.

4 A biologist is researching the growth of a certain species of hamster. She proposes that the length, $x \mathrm{~cm}$, of a hamster t days after its birth is given by

$$
x=15-12 \mathrm{e}^{-\frac{t}{14}}
$$

(a) Use this model to find:
(i) the length of a hamster when it is born;
(ii) the length of a hamster after 14 days, giving your answer to three significant figures.
(b) (i) Show that the time for a hamster to grow to 10 cm in length is given by $t=14 \ln \left(\frac{a}{b}\right)$, where a and b are integers.
(ii) Find this time to the nearest day.
(c) (i) Show that

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{14}(15-x) \tag{3marks}
\end{equation*}
$$

(ii) Find the rate of growth of the hamster, in cm per day, when its length is 8 cm .
(1 mark)

5 The point $P(1, a)$, where $a>0$, lies on the curve $y+4 x=5 x^{2} y^{2}$.
(a) Show that $a=1$.
(b) Find the gradient of the curve at P.
(c) Find an equation of the tangent to the curve at P.

Turn over for the next question

6 A curve is given by the parametric equations

$$
x=\cos \theta \quad y=\sin 2 \theta
$$

(a) (i) Find $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$.
(ii) Find the gradient of the curve at the point where $\theta=\frac{\pi}{6}$.
(b) Show that the cartesian equation of the curve can be written as

$$
y^{2}=k x^{2}\left(1-x^{2}\right)
$$

where k is an integer.

7 The lines l_{1} and l_{2} have equations $\mathbf{r}=\left[\begin{array}{r}8 \\ 6 \\ -9\end{array}\right]+\lambda\left[\begin{array}{r}3 \\ -3 \\ -1\end{array}\right]$ and $\mathbf{r}=\left[\begin{array}{r}-4 \\ 0 \\ 11\end{array}\right]+\mu\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$ respectively.
(a) Show that l_{1} and l_{2} are perpendicular.
(b) Show that l_{1} and l_{2} intersect and find the coordinates of the point of intersection, P.
(c) The point $A(-4,0,11)$ lies on l_{2}. The point B on l_{1} is such that $A P=B P$.

Find the length of $A B$.

8 (a) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1+2 y}}{x^{2}}
$$

given that $y=4$ when $x=1$.
(b) Show that the solution can be written as $y=\frac{1}{2}\left(15-\frac{8}{x}+\frac{1}{x^{2}}\right)$.

END OF QUESTIONS

